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Limited laboratory capacity in the United States 
has hindered access to testing for severe acute re-

spiratory syndrome coronavirus 2 (SARS-CoV-2) and 
has delayed results. To control outbreaks of corona-
virus disease (COVID-19), testing capacity must be 
increased and maintained for the foreseeable future. 
One resource-saving, capacity-increasing approach is 
pooling samples, thereby testing multiple persons si-
multaneously. A negative result for the pool indicates 
that all samples were below the limit of detection, and 
a positive result for the pool requires individual re-
testing of all samples. Pooled testing has been widely 
proposed as a way to expand capacity for large-scale 
screening (1,2; C.M. Verdun, unpub data, https://
doi.org/10.1101/2020.04.30.20085290), a proactive 
strategy for early pathogen detection, primarily for 
persons who are not yet symptomatic.

Saliva is being used as a noninvasive source for 
SARS-CoV-2 testing (3,4) yet can be more diffi cult 
to process than traditional swab-based samples (5). 

Given limited empirical evidence to properly inform 
projections of feasibility and cost-effectiveness of 
pooling, we explored the potential of pooling saliva 
to increase SARS-CoV-2 testing capacity.

The Study
Using saliva collected from COVID-19 inpatients 
and at-risk healthcare workers (5), we combined 1 
SARS-CoV-2–positive sample (<38 PCR cycle thresh-
old [Ct]) with SARS-CoV-2–negative saliva (Appen-
dix, https://wwwnc.cdc.gov/EID/article/27/4/20-
4200-App1.pdf) before RNA extraction in total pool 
sizes of 5 samples/pool (n = 23 pools), 10 (n = 23), and 
20 (n = 31). As pool size increased, detection sensitiv-
ity decreased independent of starting viral load (pool 
of 5, +2.2 cycle threshold [Ct], 95% CI 1.4–3.0 Ct; 10, 
+3.1 Ct, 95% CI 2.3–4.0 Ct; 20, +3.6 Ct, 95% CI 2.7–4.4 
Ct) (Figure 1; Appendix).

By applying the regression coeffi cients (Ct in-
crease) to the Ct values from all SARS-CoV-2–positive 
saliva samples detected during our studies (6), we es-
timate that pool sizes will lead to detection sensitivi-
ties of 92.59% (95% CI 88.89%–95.56%) for pools of 5 
samples, 88.89% (95% CI 80.00%–91.85%) for pools of 
10, and 85.19% (95% CI 75.56%–91.11%) for pools of 
20, relative to sensitivity of unpooled samples (Ap-
pendix Figure 1). This loss in sensitivity could be min-
imized through protocol modifi cations: increasing 
the volume of pooled samples tested (400 μL, n = 20 
pools of each size; Appendix Figure 2) and decreasing 
the elution volume.

On the basis of the calculated relative sensitiv-
ity loss resulting from pooling, we modeled the num-
ber of tests required (total of pooled and individual 
samples from positive pools tested) for a population 
of 10,000 with increasing SARS-CoV-2 prevalence
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We analyzed feasibility of pooling saliva samples for se-
vere acute respiratory syndrome coronavirus 2 testing 
and found that sensitivity decreased according to pool 
size: 5 samples/pool, 7.4% reduction; 10 samples/pool, 
11.1%; and 20 samples/pool, 14.8%. When virus prev-
alence is >2.6%, pools of 5 require fewer tests; when 
<0.6%, pools of 20 support screening strategies.
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 (Figure 2, panel A). We estimate that for populations 
with prevalence <0.6%, pools of 20 require the few-
est tests. However, for populations with prevalence 
>2.6%, our analyses suggest that pooling of 5 samples 
leads to the fewest tests. For populations with preva-
lence >28.1%, testing individual samples is more effi-
cient than testing pools of any size. Thus, we suggest 
using an adaptive pooling strategy that accounts for 
SARS-CoV-2 prevalence for the population tested: as 
virus prevalence decreases, pool size can be increased, 
but as prevalence rises, pool size should be decreased.

Because sensitivity varies by pooling design (Fig-
ure 1), a different number of positive results will be 
detected for a given population with a given SARS-
CoV-2 prevalence. As virus prevalence decreases, we 
estimate that cost savings of pooled testing will in-
crease (Figure 2, panel B). For example, if SARS-CoV-2 
prevalence for a 10,000-person population was 0.5%, 
then pooling by 20 would require only 1,318 tests, 
including retesting of all persons from test-positive 
pools. If tests cost US$30 each, the savings would be 
$260,453 relative to individual testing while still iden-
tifying ≈43 of 50 infected persons. The savings will 
vary on a scale relative to test prices. Ultimately, the 
net benefits of pooled testing can continue to increase 

even as virus prevalence decreases with increased 
pool sizes, which is essential for ongoing screening.

Conclusions
The cost of SARS-CoV-2 testing can be prohibitive 
when positive samples are rarely found, presenting a 
major barrier to prolonged screening strategies. Pool-
ing of samples can help overcome this barrier. Our 
model demonstrates that as local outbreaks fluctuate, 
adapting pool sizes will have resource-savings benefits.

The benefits of pooled testing will always be ac-
companied by decreased detection sensitivity. How-
ever, the lower overall number of tests required and 
the lower associated costs expands testing capacity, 
permitting more frequent testing, and testing persons 
more often mitigates the loss of sensitivity (7). By en-
abling broader testing, pooling has the potential to 
identify more infected persons than more limited 
(or no) individual testing. Infected persons can then 
be isolated from the population, thus reducing the 
probability of contact between a susceptible and an 
infectious person, ultimately reducing transmission. 
Given our findings, we urge the US Food and Drug  
Administration to develop new guidelines for pooled-
testing approaches. Although the first Emergency Use 

Figure 1. Effect of pooling on detection of severe acute respiratory syndrome coronavirus 2, by pool size and between samples tested. 
A) As the pool size increased, so did the Ct value (dotted lines connect pools comprising the same positive sample). Ct for positivity is 
set to 38. Samples falling on the x-axis indicated samples from which signal was not detected by reverse transcription quantitative PCR. 
B) As the pool size increased, so did the Ct. We equated this change by using linear regression (pool of 5 samples, dark blue, +2.2 Ct, 
95% CI 1.4–3.0 Ct; pool of 10, light blue, +3.1 Ct, 95% CI 2.3–4.0 Ct; pool of 20, green, +3.6, 95% CI 2.7–4.4 Ct). Dashed lines indicate 
Ct 38 (cutoff for sample positivity). 1/5, pool of 5; 1/10, pool of 10; 1/20, pool of 20. Ct, cycle threshold.
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Authorization for SARS-CoV-2 pooled testing (<4 
swab samples in 1 test) (8) will be most useful in high-
prevalence settings, the ≈12%–15% losses in sensitivity 
when pooling 10–20 samples would probably not pass 
current authorization criteria (>95% sensitivity).

Going forward, screening strategies need to be re-
viewed separately from traditional diagnostic testing, 
taking into consideration the repeated testing of indi-
viduals performed during screening. For strategies con-
sidering twice-weekly sampling, such as in the reopen-
ing plans for many US colleges, even if larger pools have 
lower sensitivity per test, the probability of 2 repeated 
false-negative results for any person will often be less 
than the probability of a false-negative result for a single 
test from a small pool. For example, a small pool (or in-
dividual test) may have the probability of a false-nega-
tive result of 2% but cost may limit testing to once per 
week. Conversely, the lower per-person cost of a large 
pool with a per-test probability of a false-negative result 
of 14% is more likely to allow for testing twice per week. 
Therefore, persons tested twice in larger pools have a 
per-week false-negative probability of only 1.96%. In the 
context of prolonged community screening, sensitivity 
should be thought of as per unit time, and the testing 
regimen should be taken into account.

Our estimates are conservative; the number of 
tests required is most likely lower than predicted, es-
pecially if behavioral or geographic information can 
be used to stratify the population so that the adap-
tive pooling strategy can be applied differentially to 
different sampled subpopulations. However, this ap-
proach needs to be balanced with feasibility in the lab-
oratory because pooled testing adds additional steps 
and complexity to the system, all of which must be re-
liably implemented. Furthermore, pooled approaches 
could incorporate retesting individual samples from 
pools generating any SARS-CoV-2–specific signal in 
quantitative reverse transcription PCR regardless of 
Ct (in place of those pools with the <38 Ct cutoff ap-
plied here) (9). Although pooling has traditionally 
focused on extracted nucleic acid before quantita-
tive reverse transcription PCR (10–12), because of the 
expense of RNA extraction and a comparable effect 
on detection sensitivity (Appendix), we recommend 
pooling before RNA extraction. Validation of our 
work in additional settings and on a larger scale will 
help better inform our models.

The cost-savings benefits of adaptive pooling sa-
liva for community screening for SARS-CoV-2 pro-
vides a mechanism to maintain testing as virus spread 

Figure 2. The resource-saving benefit of sample pooling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing, 
based on size of the pool and expected prevalence of SARS-CoV-2 within the population. A) We modeled the number of tests required 
to test 10,000 persons (results qualitatively scale with population) when pools contain 5, 10, or 20 samples (and individually retesting 
samples within positive pools) compared with testing samples individually (pool = 1 sample). As prevalence increases, so does 
the number of pools positive for SARS-CoV-2, thereby increasing the required number of confirmatory tests of individual samples. 
Therefore, over a prevalence of 2.6%, pooled samples of 5 result in fewer overall tests required than do larger pool sizes. B) At lower 
prevalence rates, such as when outbreaks have been controlled but ongoing screening is required, pools of 10 or 20 samples yield 
substantial cost savings for the same expected level of positive detections, after accounting for sensitivity differences. Values are shown 
in US$. Insets show the region with <5% prevalence.
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is brought under control and to avoid resurgence. Even 
if prevalence is very low, it is probably desirable to in-
crease pool sizes before stopping testing altogether. To-
gether with the ease of saliva collection, pooling samples 
should be considered as an effective testing strategy for 
expanding the breadth of testing and continued screen-
ing during the ongoing COVID-19 pandemic.
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Increasing SARS-CoV-2 Testing Capacity 
with Pooled Saliva Samples 

Appendix 

Methods 

Sample pooling 

Saliva was collected as a part of the Yale IMPACT Biorepository (1) from COVID-19 

inpatients and healthcare workers at the Yale-New Haven Hospital (Yale Human Research 

Protection Program Institutional Review Boards FWA00002571, Protocol ID. 2000027690) (1). 

RNA was extracted and tested by RT-qPCR for SARS-CoV-2 RNA (N1) (2). 

Saliva samples were combined into pools of 5 (n=23), 10 (n=23), and 20 (n=31). Each 

pool contained equal amounts of one SARS-CoV-2 positive sample (as determined by RT-qPCR; 

31 positive samples total) and the respective number of individual SARS-CoV-2 negative 

samples required to complete the target pool size. RNA extraction from pooled samples and RT-

qPCR for SARS-CoV-2 detection were performed according to the biorepository’s standard 

operating procedures (1–3) with either 300 µl (equating to 60 µl, 30 µl, and 15 µl of the original 

sample) or 400 µl (equating to 80 µl, 40 µl, and 20 µl of the original sample; n=20 for each of 5, 

10 and 20 pools) total extraction input volume with RNA eluted into a total volume of 75 µl. 

Later, RNA extracted from saliva (n=10) was tested individually or together in pool sizes of 5 or 

10 and tested in RT-qPCR for SARS-CoV-2 detection (2). The cut-off for all RT-qPCR assays in 

this study was set at a cycle threshold (Ct) of 38 (2). 

Statistical analyses 

Sensitivity analyses 

We fit a linear regression to the experimental pooling data to model the change in Ct 

values of positive samples following pooling. Let ‘ΔCt’ be the change in Ct value of pooled 

samples and let ‘ratio’ be the categorical ratio of pool size (i.e. 1/5, 1/10, 1/20). Analyses were 

done separately by input volume in order to determine the effect of pool size under both 300 µl 

https://doi.org/10.3201/eid2704.204200
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and 400 µl extraction conditions. This equation was used, separately, for both pre-extraction 

saliva and post-extraction RNA pooling. Ratio in this model can be interchanged with 

“condition” for the model of the 1/20 PBS and water dilution data. 

We found that the change in Ct value post-pooling was independent of the Ct value of the 

undiluted sample (Pearson’s, r=-0.004; 95% CI: -0.240, 0.233), thus it was not included in the 

model. Confidence intervals were generated by simulating from the covariance matrix of the 

parameters from the fitted model using the mvrnorm function in the R package “MASS” (4), and 

quantile functions. 

Modeling the resource-saving benefit of sample pooling for SARS-CoV-2 testing 

The problem of pooling can be approached modularly. We model pooling based on the 

expected prevalence in a test population of known size at a given time. By approaching the 

problem this way, we abstract from the problem of estimating prevalence in the sampled 

population at a given time. Nevertheless, our approach can be plugged into broader population 

level models with epidemiological dynamics. 

If samples are independent of each other, pulled from the same well-mixed population 

(identically distributed), and that anyone in a test-positive pool needs to be re-tested individually, 

then binomial sampling theory provides the tool to compute the number of tests needed, which 

has been used for over half a century (5,6). The number of positive groups is 𝑃𝑃 = [1 − (1 −

𝜎𝜎(𝑔𝑔)𝑚𝑚)𝑔𝑔](𝑁𝑁/𝑔𝑔), given a total test population of size 𝑁𝑁 that is divided into groups of size 𝑔𝑔 

yield (N/g) groups, with a prevalence of infection in the sampled population equal to 𝑚𝑚 and a 

test sensitivity 𝜎𝜎(𝑔𝑔), where sensitivity can be a function of group size. The total number of tests 

need is 𝑇𝑇 = (𝑁𝑁/𝑔𝑔)  + 𝑃𝑃𝑃𝑃. The R script to implement these calculations are available at 

https://github.com/efenichel/pooled-saliva-testing. 

To calculate the total number of tests and the number of test positive groups, we assume 

the expected prevalence is computed with error or that any error is orthogonal to the sampling 

error associated with the estimates of sensitivity. Therefore, to propagate the uncertainty 

associated with sensitivity sampling error, we make the calculations for the number of positive 

groups and total tests using a single predefined, conservative cut-off value. This mimics the 

existence of an established protocol. Variation in the cycle thresholds used would increase the 

sampling uncertainty for sensitivity, and would expect the point estimate of the sensitivity, 
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conditional on pool size, to be a convex combination of the estimates using individual cycle 

thresholds. 

In practice, those coordinating testing need to consider what constitutes a single, well-

mixed sampled population. For example, demographic or socio-economic information may be 

used to group samples into distinct subpopulations prior to pooling and testing. This would be 

called stratifying the population. If these subpopulations have different expected prevalences, 

then different sized pools may be optimal for the different subpopulations. However, 

stratification requires population specific data that is invariant to the test itself or stronger 

assumptions. The possibility of embedding an adaptive pooling approach into a model of a 

system that brings population level data to bear is a strength of the approach. 

Another consideration that the model does not directly address is selection into the 

sampled population. If there is selection, then the well-mixed assumption is violated. There are 

two reasons to be concerned about this in practice. First, if people who are more likely to test 

positive are also more likely to get tested when there is a binding test capacity constraint, then as 

the constraint is relaxed with pooling, the expected prevalence in the population is likely to fall. 

This is a reason why stratifying the sample based on observable features, e.g., self-assessed 

probability of infection prior to pooling might be important. Conversely, consider a segment of 

the population that tries to avoid testing and engages in high risk behaviors (i.e., people who 

believe COVID-19 is a hoax). These people select out of testing. If it is easier to include these 

people in a testing regime with greater capacity due to pooling, then expected prevalence may 

actually rise. This can also be addressed with stratification of the population. 

Further statistical analyses were conducted in GraphPad Prism 8.0.0 as described in the 

text and figure legends. 

Results 

When pooling saliva samples, the effect on the sensitivity of detection was independent 

of the Ct value of the undiluted sample (Pearson’s, r=-0.004; 95% CI: -0.240, 0.233), i.e. the 

sensitivity loss in a sample with a higher Ct value (lower viral load) was not more than that of a 

sample with a lower Ct value (higher viral load). 
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We also evaluated the effect of pooling post-RNA extraction and pooled RNA templates 

extracted from undiluted saliva samples by 5 and by 10 (n=10). While we observed a similar 

decrease in sensitivity (pool: of 5, +2.2 Ct, 95% CI: 1.7-2.6; pool of 10, +3.1 Ct, 95% CI: 2.6-

3.6) as to when pooled prior to RNA extraction, the degree to which each sample varied was less 

with less overall variation as compared to pre-extraction pooling (F test, pools: of 5, p = 0.061; 

pools of 10, p = 0.009, Appendix Figure 3). 
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Appendix Figure 1. As pool size increases, more samples would be classified as negative in comparison 

to samples tested individually (unpooled). Each dot represents one of the 180 Yale IMPACT saliva 

samples which generated signal when tested by RT-qPCR for SARS-CoV-2 N1. Of these, 135 fell below 

the cycle threshold (Ct) of 38 (solid line) and were classified as positive for virus. The regression 

coefficient (representing expected Ct increase) for each of the pool sizes was added to the Ct value 

generated from the undiluted sample (shown in black) to determine the relative level of sensitivity for each 

pool size. The area shaded in red indicates the Ct range in which N1-signal is considered to be below the 

limit of detection. 
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Appendix Figure 2. Cycle threshold (Ct) values of saliva samples (n=20) tested individually (pool size = 

1) at a total volume of 300 µL, or when diluted with an increasing number of negative samples (total pool 

sizes of 5, 10 and 20) and a total extraction volume of 400 µL. When extracting from 400 µL volumes of 

pooled samples, we observed improved detection (pool of 5, -0.1 Ct, 95% CI -1.2, 1.1; pool of 10, 0.3 Ct, 

95% CI -0.8, 1.5; pool of 20, 1.1 Ct, 95% CI -0.1, 2.2; linear regression). Dotted lines connect pools 

comprised of the same positive sample. Ct threshold for positivity is set to 38. Samples falling below the 

x-axis indicated samples from which signal was not detected in RT-qPCR. 
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Appendix Figure 3. Less variation in cycle threshold (Ct) values when pooling RNA templates. (A) Ct 

values of SARS-CoV-2 positive RNA (n=10) extracted from saliva samples when tested individually (pool 

size = 1) on day of sample collection (initial) and following storage of RNA at -80°C (freeze/thaw), or when 

diluted with 4 or 9 SARS-CoV-2 negative RNA templates (total pool sizes of 5 and 10). Dotted lines 

connect pools comprised of the same positive sample. While the median change in Ct value was 

comparable whether pooling samples or RNA templates by (B) 5 (Mann-Whitney, p = 0.499) or (C) 10 

(Mann-Whitney, p = 0.556), pooling of samples resulted in more varied Ct changes (F test, p = 0.061 and 

p = 0.009, respectively). 

 


